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Abstract

Methodologies to quantify the impact of manufacturing uncertainties in 3D
CFD based design strategies have become increasingly available over the
past years as well as optimization under uncertainties, aiming at reducing
the systems sensitivity to manufacturing uncertainties. This type of non-
deterministic simulation depends however strongly on a correct character-
ization of the manufacturing variability. Experimental data to characterize
this variability is not always available or in many cases cannot be sampled in
sufficiently high numbers. Principal Component Analysis (PCA) is applied to
the sampled geometries and the influence of tolerances classes, sample
size and number of retained deformation modes are discussed. It is shown
that the geometrical reconstruction accuracy of the deformation modes
and reconstruction accuracy of the CFD predictions are not linearly related,
which has important implications on the total geometrical variance that
needs to be retained. In a second application the characterization of manu-
facturing uncertainties to a marine propeller is discussed. It is shown that
uncertainty quantification and robust design optimization of the marine
propeller can successfully be performed on the basis of the derived uncer-
tainties. This leads to a propeller shape that is less sensitive to the manufac-
turing variability and therefore to a more robust design.

Introduction

Virtual prototyping based aerodynamic design procedures in aeronautics,
propulsion and power generation systems are still overwhelmingly of
deterministic character. They neglect the influence of uncertainties that
originate from the manufacturing process. The computer-based design
analysis by Computational Fluid Dynamics (CFD) is done on a CAD
based geometrical model, ignoring the inevitable manufacturing variabil-
ity that is inherent to every manufacturing process. The admissible
manufacturing tolerances resulting from geometrical deformation by
casting, heat treatment or the machining processes are not accounted for
in the simulations, which leads to design choices that have an unknown
behaviour with respect to these uncertainties.
Methodologies to quantify the impact of manufacturing uncertainties

in 3D CFD based design strategies were for a long time computationally
unaffordable on real world industrial applications. Over the past decade
uncertainty propagation methods have been developed that reach levels
of industrial applicability such as non-intrusive polynomial chaos and
sparse polynomial chaos methods based on both quadrature and
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regression (Xiu and Karniadakis, 2003; Najm, 2009; Blatman and Sudret, 2011; Abraham et al., 2017), colloca-
tion methods (Mathelin and Hussaini, 2003; Loeven et al., 2007), or Monte-Carlo and Multi-Level
Monte-Carlo methods for which an overview can be found in (Schmidt et al., 2019). Intrusive polynomial chaos
(Smirnov and Lacor, 2008; Dinescu et al., 2010) and perturbation methods also received attention (Dervieux,
2019).
Some of these methods are integrated into toolsets that allow for quantification of operational und geometrical

uncertainties on industrial scale simulations such as described in (Wunsch et al., 2015), where a significant
reduction in computational cost is achieved by a sparse grid technique (Smolyak, 1963). To address optimization
under uncertainties, this uncertainty quantification (UQ) method is combined with a robust optimization
approach, which relies on a mixed design space covering the geometrical variability and uncertainties (Poulos
et al., 2017; Nigro et al., 2019a).
By introducing the probabilistic nature of uncertainties in the simulation based design process, the governing

equations transform into stochastic partial differential equations that are solved with methods such as the ones
listed above. A key consequence of this approach is that predicted quantities such as loads, drag, efficiency, etc.
are not single values anymore but probability density functions (PDF). Figure 1 illustrates this fundamental
change. The red line indicates the value that is obtained by standard deterministic simulations that ignores the
influence of uncertainty. Here the mean value of the measured input uncertainty is used as input to the simula-
tion. The green curve shows the result of a non-deterministic simulation where the measured distribution of the
input uncertainty is provided as input to the simulation. The first observation is that its mean value is different
from the output of the deterministic simulation. This is a consequence of the non-linear response of the simu-
lated system over the range of variability of the input uncertainty. In CFD the simulated system of equations are
the Navier-Stokes equations and only for very small input uncertainty variations a close to linear response can be
observed. A second main observation is that the prediction of the system is different, if the input is sampled ran-
domly as shown by the blue line. The characterization of the input uncertainty is crucial to the non-deterministic
simulation approach. This characterization of input uncertainties and their application to uncertainty quantifica-
tion and robust design optimization (RDO) is at the core of this contribution.
Characterization of input uncertainties in industrial design is a challenging task and these challenges can be

very different in function of the industry or application. An aircraft manufacturer might turn out a low 2-digit
number of aircrafts per year for some aircraft types. If uncertainty on components like the wings should be con-
sidered, the time to sample a sufficiently large number of actually manufactured wings to build a statistically con-
verged data set might take a few years. Measuring a few hundred compressor blades of an aircraft engine to
sample the manufacturing variability is considered a reasonable data set size. But what are the options for custom
built machines, where the sample size will never be sufficiently high for the task of characterization of input
uncertainties? A possible path to the characterization of manufacturing input uncertainties is described in (Büche
et al., 2019) and adopted here. It is based on deriving input uncertainties from technical norms that determine
the general tolerances in manufacturing such as ISO 2768-1 (1989).
On the basis of this norm, manufacturing tolerances are derived for a high-pressure turbine blade and then vir-

tually sampled. A Principal Component Analysis (PCA) is then applied on the sampled geometries to determine
the principal modes of deformation of the geometry independent of the geometry parametric description. In the
case of many uncertainties it can be used to reduce the complexity of the problem, by representing the same geo-
metrical variability with less variables. It is also used to gain physical insight into the influence of the deform-
ation modes. Then the technical norm based method for characterizing manufacturing input uncertainties is
applied to a marine propeller for which an optimisation under uncertainties is performed.

Figure 1. Concept of non-deterministic simulations.
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Methodology

In the following sections, the derivation of manufacturing variability from technical norms is discussed and the
virtual sampling method is described as well as the application of principle component analysis. The last section
describes shortly the applied uncertainty propagation method to the extent to which it is directly relevant for the
understanding of the work described here.

Derivation of manufacturing uncertainty from technical norms

Following (Büche et al., 2019) the norm relevant to general manufacturing tolerances (ISO 2768-1, 1989) is
used to illustrate the principle. Table 1 shows the permissible tolerances in (mm) for four different tolerance
classes from “fine” to “very coarse”. Figure 2 is an illustration of the class “medium”. The first observation that
can be made is that the absolute value of the tolerance increases with the linear dimension. While for the class
“medium” the permissible tolerance is ±0.1 mm for a nominal length ranging from over 3 to 6 mm, the permis-
sible tolerance is ±1.2 mm for a nominal length ranging from over 1,000 to 2,000 mm. This is also illustrated in
Figure 2 (left). Figure 2 (right) shows the relative tolerance in (%) over the nominal length. It is seen that while
the absolute value is small for a short nominal length, the relative tolerance can reach up to 20%. Components
with small linear dimensions might thus be affected by larger uncertainty. One could argue that because the
dimension is small it is of less influence on the machine performance. This is however a wrong assumption as
will be shown when analyzing the influence of the deformation modes on the high pressure turbine further
down.
Computer aided designs (CAD) of components such as turbine blades or marine propellers is usually done on

the basis of a given parametric description describing lengths, radii and angles of the geometry. This parametric
description is exploited in the following to define the manufacturing tolerances and sample the geometries virtu-
ally on the computer.

Virtual sampling of manufacturing variability and Principal Component Analysis

The virtual sampling method for manufacturing variability and subsequent PCA can be described in the follow-
ing steps:

1. Derivation of manufacturing tolerances for the individual geometrical parameters
2. Definition of uncertainties on all parameters (type of uncertainty)
3. Perform a design of experiment (here a Latin Hyper-Cube Sampling) that generates O(1,000) geometries

Table 1. Tolerance classes for linear dimensions from (ISO 2768-1, 1989).

Permissible deviations in (mm) for ranges in
nominal length

Tolerance class designation

f
(fine)

m
(medium)

c
(coarse)

v (very
coarse)

0.5 up to 3 ±0.05 ±0.1 ±0.2 ----

over 3 up to 6 ±0.05 ±0.1 ±0.3 ±0.5

over 6 up to 30 ±0.1 ±0.2 ±0.5 ±1.0

over 30 up to 120 ±0.15 ±0.3 ±0.8 ±1.5

over 120 up to 400 ±0.2 ±0.5 ±1.2 ±2.5

over 400 up to 1,000 ±0.3 ±0.8 ±2.0 ±4.0

over 1,000 up to 2,000 ±0.5 ±1.2 ±3.0 ±6.0

over 2,000 up to 4,000 ---- ±2.0 ±4.0 ±8.0
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4. Build a covariance matrix based on these geometries
5. Solve the eigenvalue problem. The resulting eigenmodes become the uncertain variables and the eigenvalues

the variance of these uncertainties.
6. The number of retained modes can be truncated and only a reduced number of uncertainties is retained.

After the manufacturing tolerances are identified for all parameters in function of the appropriate tolerance
class (step 1), types of distribution need to be attributed to these uncertainties. This step requires some insight
into the manufacturing process and the type of distribution can be informed by past experience or simply be
assumed. In any case the sampling method (step 3) needs to be compatible with arbitrary PDF shapes. To unify
the sampling of a Design of Experiment (DoE), the sampling is performed over the Cumulative distribution
function (CDF) instead of the PDF. This allows for a uniform sampling over the parameter range, which is for
every CDF in the range [0, 1]. Figure 3 (top) shows that sampling uniformly from 0 to 1 for a uniform distribu-
tion results in uniformly distributed sampling points. Figure 3 (bottom) shows that sampling uniformly from 0
to 1 for a symmetric beta distribution results in sampling points that respect the probabilities of a beta
distribution.
A Latin Hyper-Cube sampling is then performed on the CDF distributions according to the characterized

manufacturing uncertainties. This generates O(1,000) geometries in an automated loop over the design or CAD
tool used to build the geometries. They are topologically similar, which eases the computation of the geometry
covariance matrix (step 4). Then a PCA is applied to the covariance matrix computed from the virtual geometry

Figure 2. Absolute (left) and relative (right) tolerances for class medium (ISO 2768-1, 1989).

Figure 3. Uniform (top) and Beta distributed (bottom) sampling via the CDF.
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sampling (step 5) and the resulting eigenmodes become the uncertain variables, while the eigenvalues represent
the variance of these uncertainties. Finally, the number of retained modes can be truncated to retain a variable
amount of geometrical variance. This is done for several values of retained variance resulting in separate UQ pro-
blems with an increasing number of uncertainties. These are then compared to the full UQ problem. The
methods used to propagate these uncertainties are described in the following section.

Uncertainty quantification, scaled sensitivity derivatives and robust design optimization

Uncertainty quantification

The uncertainty propagation method used is the non-intrusive probabilistic collocation method by (Loeven
et al., 2007). The chain of methods is available in FINE™/Design3D (NUMECA, 2019) and used here. The
methodology is described in detail in (Wunsch et al., 2015), but the main elements are reprinted here. If a
generic stochastic partial differential equation is considered such as:

L(ξ)u(x
!
, t , ξ) ¼ S(x

!
, t) (1)

with L being a differential operator containing space and time derivatives, S being the source terms and ξ a
random input parameter, and u is the non-deterministic solution. In the non-intrusive probabilistic collocation
method Lagrange interpolating polynomials are used to construct the following expansion:

u(x
!
, t , ξ) ¼

XNp

i¼1

ui(x
!
, t)hi(ξ) (2)

where, ui(x
!
, t) is the deterministic solution at the collocation point ξi; hi(ξ) is the Lagrange interpolating polyno-

mial corresponding to the collocation point ξi. The Lagrange interpolating polynomial is given by:

hi(ξ) ¼
YNp

k¼1; k=1

ξ� ξk
ξi � ξk

(3)

with: hi(ξi) ¼ δij . The collocation points are selected as the Gauss quadrature points by means of an algorithm
for general Probability Density Function (PDF) shapes (Golub and Welsh, 1969). In order to propagate the
input uncertainty modelled by the random variable ξ, Equation (2) is introduced into Equation (1). This pro-
vides a system of Np uncoupled deterministic simulations:

L(ξi)ui(x
!
, t) ¼ S(x

!
, t) (4)

Once all Np computations are performed, the first four moments of any output quantity φ can be calculated
based on the weights wk from the Gauss quadrature as follows:

μn ¼
XNp

k¼1

wkðφk x
!
; t

� �� μ1Þn (5)

For several simultaneous uncertainties multi-dimensional quadrature can be done by tensor products. This
leads, however, to an exponential increase in the number of points with the number of dimensions, the so-called
“curse of dimensionality”. Sparse grid quadrature can overcome this curse of dimensionality to a certain extent and
make non-intrusive collocation methods accessible for higher stochastic dimensions. The implementation is
based on Smolyak’s quadrature (Smolyak, 1963). This reduces the cost for an accurate prediction of mean value
and variance for 10 simultaneous symmetric beta distributed uncertainties from 59,049 to 21 CFD simulations.

Scaled sensitivity derivatives

The relative influence of a given uncertain input on the solution of the system is determined by calculating
scaled sensitivity derivatives (Turgeon et al., 2003). This is applied here to the probabilistic collocation method.
The scaled sensitivity derivative is defined as the partial derivative of the solution u(x

!
, t , ξ) with respect to the
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uncertain input parameter ξ, multiplied with the standard deviation of the uncertain input parameter as in (6)

σξi
@u(x

!
, t , ξ)
@ξi

(6)

Robust design optimization

For robust design optimization the UQ method is coupled with a surrogate assisted online optimization proced-
ure (NUMECA, 2019). The optimization objectives and constraints are not single values in robust optimization,
but the mean value and standard deviation of the quantities of interest. The most straightforward approach
would be to run full 3D CFD based UQ simulations for every point in the Design of Experiment (DoE) and
calculate a surrogate for the statistical moments. This is, however, very costly since a database usually contains
hundreds of points. At the example of 10 simultaneous uncertainties, a DoE of 200 samples would require
4,200 CFD simulations, which is hardly feasible. A mixed DoE comprising both the design variables and the
uncertainties is used here (Poulos et al., 2017; Nigro et al., 2019a), which reduces the computational cost
significantly.

Results and discussion

The above described methodology is first applied to a high-pressure turbine. Manufacturing uncertainties are
characterized and sampled based on the relevant technical tolerancing norm. The PCA is applied and the influ-
ence of the sample size used to build the geometrical covariance is discussed. Then the influence of the individ-
ual modes on the prediction accuracy of CFD quantities is analyzed and it is shown that geometrical
reconstruction accuracy and CFD predictions are not linearly related, which has important implications on the
total geometrical variance that needs to be retained.
A second application of the characterization of manufacturing uncertainties to a marine propeller is discussed

and it is shown that these uncertainties can be used for robust design optimization of the marine propeller.

High pressure turbine: Virtual sampling of manufacturing variability

The geometry investigated here is a high-pressure turbine blade that was designed with the 3D design software
AxCent (Concepts NREC, 2019), which is dedicated to turbomachinery design and coupled for CFD analysis
to the above described simulation chain. A pair of 4 uncertainties is chosen as uncertain variables, four uncertain-
ties in a blade section close to the hub and four uncertainties in a blade section close to the tip of the turbine
blade.
Figure 4 shows the shape of the two blade sections, where the blue profile is located close to the hub and the

red profile close to the tip of the blade. Eight uncertainties are derived from ISO 2768 in 4 tolerance classes for
the following parameters of the AxCent geometric model:

• Chord length
• Leading edge blade angle
• Trailing edge blade angle
• Leading edge radius

The choice of the uncertainties is based on the authors experience with UQ simulations of turbomachinery
cases and literature references, given that no manufacturing uncertainties are available that result from a specific
manufacturing process. The choice of the four parameters is based on the work of Nigro et al. (2019b), where
realistic manufacturing variabilities derived by Lange et al. (2010) were quantified. Among the most influential
uncertainties with respect to efficiency that were identified by Nigro et al. (2019b) are the leading edge radius,
leading and trailing edge angles. The chord length was quantified to have a smaller impact on the efficiency. For
the uncertainties that lie within the tolerance bounds defined based on the technical norm, a preliminary study
didn’t show notable differences between different types of symmetric distributions inside these bounds. Table 2
shows in the first column the name of the parameter per section and in the second column its value. It is seen
that the trailing edge blade angle is approximately −60.5° for the section close to the hub and −55.9° for the
section close to the tip, which is also reflected in Figure 4.
Table 2 lists the permissible tolerances for the four classes from ISO 2768. At the example of the chord length

with a nominal value of 8.73 mm the admissible tolerance is ±0.1 mm for the class “fine” and ±1.0 mm for the
class “very coarse”. For angular dimensions the permissible tolerances increase with decreasing nominal angles as
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shown in Table 2 for the trailing and leading edge angles in both sections. The trailing edge angles vary between
approximately −55° and −60°, where the permissible tolerances are ±0°200 for the class “fine” and ±1°000 for the
class “very coarse”. For the leading edge angles, however, with nominal values of approximately 2° to 3° the per-
missible tolerances are ±1°000 for the class “fine” and ±3°000 for the class “very coarse”. This corresponds to an
admissible tolerance of more than 100% of the nominal value.

Table 2. Maximum admissible tolerances for the turbine blade parameters.

Nominal Value Fine Medium Coarse Very Coarse

Chord (mm)
section hub

8.73246 ±0.1 ±0.2 ±0.5 ±1.0

Chord (mm)
section tip

8.73246

Trailing edge blade angle (°)
section hub

−60.4895 ±0°200 ±0°200 ±0°300 ±1°000

Trailing edge blade angle (°)
section tip

−55.8602

Leading edge blade angle (°)
section hub

3.01138 ±1°000 ±1°000 ±1°300 ±3°000

Leading edge blade angle (°)
section tip

1.84815

Leading edge radius (mm)
section hub

0.290856 ±0.2 ±0.2 ±0.4 ±0.4

Leading edge radius (mm)
section tip

0.290856

Figure 4. Sketch of blade section close to hub (blue) and tip (red).
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Simulation setup

The high-pressure turbine is meshed with 2.33 million structured full hexahedral cells generated with
AutoGrid5. The CFD simulations are performed with a Spalart-Almaras turbulence model and the simulation
converges in 15 min on 48 processors using the CPU-Booster in FINE™/Turbo. The convergence level is
pushed further than usual to assure that even the smallest geometrical changes are taken into account. This was
done out of precaution and based on the effective convergence observed after having run the simulations, the
computational effort can be reduced by a factor 2. Figure 5 shows the colour contour of the relative Mach
number in a cutting plane placed at 90% of the blade span position.
Figure 6 illustrates the influence of the uncertainties on the geometry and the flow solution. The view perspec-

tive is strictly identical for both Figures 6 (left) and (right) the small differences are due to the modification of
the trailing edge blade angle. This is the only parameter that is modified here.
On a side note, it should be mentioned that the parametric modeller does not restrict the influence of a par-

ameter on the geometry to a local domain of influence. As an example, modifying the chord length in the
section close to the hub has also a non-negligible influence on the tip region of the blade.

High pressure turbine: Application of PCA

With the admissible tolerances identified for all the parameters describing the turbine geometry, the virtual sam-
pling of the geometries is done by imposing truncated Gaussian distributions for all parameters that are bounded
by the upper and lower admissible tolerance. As shown above any PDF shape is possible as the sampling is done
over the CDF. The choice of the truncated Gaussian distribution is an assumption that does not limit the inter-
pretability of the method.
For the PCA based method to be judged successful the reduced set of uncertain variables needs to respect the

following conditions:

• Predict the correct mean values of quantities of interest (efficiencies, drag, etc…)
• Predict with increasing accuracy the standard deviation of quantities of interest, if more and more modes are retained
• Predict the same standard deviation as the original model if all relevant modes are retained

Figure 5. Cutting plane at 90% of span position showing the Relative Mach Number.

Figure 6. Geometry resulting from minimum value for the trailing edge blade angle (left) and maximum value (right)

at 90% of the span position.
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In view of these requirements, first a reference UQ solution is built and the results in terms of mean value
and standard deviation of isentropic efficiency and absolute total pressure ratio are shown in Figure 7. For these
results all 8 parametric uncertainties are propagated through the turbine flow. The first observation is that there
is only a slight modification of the mean values for the efficiency and nearly constant values for absolute total
pressure ratio with the various tolerance classes. The standard deviation, as it is expected, reduces with more strin-
gent tolerance classes, but there is a surprising effect when passing from class “medium” to the class “fine”. The
standard deviation reduces only very little. This is valuable information to the design engineer to know that
decreasing the admissible manufacturing tolerances does not yield any or only very little advantage in terms of
performance stability. As more stringent tolerances are connected to a significantly higher manufacturing cost. If
the performances of a machine manufactured with tolerances of class “medium” are the same as for one manufac-
tured with class “fine”, then the manufacturing cost can be reduced significantly.
These UQ results on the full system will serve as a reference for the PCA based UQ study in the following.
When applying the PCA based approach, one of the first questions to answer is the sample size of geometries

required. While experimental measurements on manufactured blades are limited to a few hundred blades, the
virtual sampling allows to increase arbitrarily the number of geometries. In this case up to 4,000 geometries are
sampled within a few minutes. This allows for a parametric study of the influence of the sample size on the
mode decomposition and the eigenvalues, which are used as variances of the imposed mode-based uncertainties.
Figure 8 shows the eigenvalues obtained for 50, 500, 2,000, and 4,000 samples. By pure visual analysis it is
immediately apparent that the eigenvalues are only converged for 2,000 samples. The value of 2,000 is case
dependent, but it is expected to be in this range for manufacturing uncertainties characterized on the basis of
general tolerancing norms.
The variance that is retained per mode is shown in Table 3. To include 90% of the variance, 3 modes need

to be retained, while 99.9% of the variance requires to retain 7 modes.

High pressure turbine: Discussion of mode analysis and mode sensitivity

In order to get an idea of what these eigenmodes correspond to in terms of geometrical deformation Figures 9–
11 show the geometrical deformation of the geometry in the direction of the respective modes and against the
direction of the respective modes. Figure 9 shows that for the first eigenmode the deformation is in the order of
the span height of the blade and represents thus a large geometrical variability. On both figures the non-
deformed geometry is shown in grey. It is then overlaid with the geometry that results from deforming the base
geometry against the direction of the first eigenmode (in blue on the left of Figure 9) and with the direction of
the first eigenmode (in red on the right of Figure 9). Visually speaking, the non-deformed geometry is once “in
front” and once “behind” the respective deformed geometry. It illustrates that the first eigenmode acts globally
over the entire height of the blade. The same principle is applied to Figures 10 and 11. Figure 10 shows the
deformation of the 2nd largest eigenmode, which appears to be in the order of the chord of the blade. Finally,
Figure 11 shows the deformation due to the 3rd eigenmode. The main observation to make is that this deform-
ation is geometrically very small and is visually difficult to identify on the figure. The main areas of deformation
are located around the leading and trailing edge of the blade and cause geometrically speaking small
deformations.

Figure 7. Evolution of the mean value and standard deviation ±1σ in function of the tolerance class for isentropic

efficiency (left) and absolute total pressure ratio (right) from very coarse to fine.
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With the geometrical deformation caused by the first three eigenmodes in mind the UQ predictions with 1,
2, 3 or 7 modes retained are analyzed and shown in Figure 12. The variance that the reduced system needs to
predict is the variance of the full system from Figure 7 for the respective tolerance class. Analyzing Figure 12, it
is seen that the prediction of the mean is nearly constant for both quantities and across the number of modes
that are retained. It can also be observed that the included variance increases with the number of modes and that

Figure 8. Eigenvalues obtained with sample sizes of 50 (top left), 500 (top right), 2,000 (bottom left) and 4,000

(bottom right) geometries.

Table 3. Variance of the geometry retained per mode (mm2).

Eigenvalue/Modes 1 2 3 4 5 6 7 8

Variance (mm2) 10.95 7.13 2.86 1.53 0.044 0.028 0.022 0.016

100%

99.9%

90%

40%
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the included variance converges with an increasing number of modes for all quantities. It is very interesting to
have a closer look to what happens in terms of CFD prediction variance when the 3rd eigenmode is included in
the UQ study. Not only that modes 1 and 2, which show by far the largest geometrical variability seem to add
only little to the variance on the CFD predictions, it is by including mode 3 that significant variability is added
to the variance of the isentropic efficiency. A relatively small geometrical variation has a significant influence on
the prediction of the solution. This shows that the geometrical reconstruction accuracy of the deformation modes
and reconstruction accuracy of the CFD predictions are not linearly related, which is something that should be
kept in mind when truncations are performed on the basis of geometrical variability only.
The high sensitivity of the isentropic efficiency to the eigenmode that controls the leading edge radius can be

made visible by analysis of scaled sensitivities. Figure 13 shows that the isentropic efficiency is most sensitive to
the 3rd eigenmode. This is in alignment of earlier findings by Wunsch et al. (2019) that the modes retaining

Figure 9. Geometrical variability of the first eigenmode. In blue (left) deformation against the 1st eigenmode; in red

(right) deformation with the 1st eigenmode.

Figure 10. Geometrical variability of the second eigenmode. In blue (left) deformation against the 2nd eigenmode;

in red (right) deformation with the 2nd eigenmode.
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the largest variability of the geometry are not necessarily the modes with the most influence on output
quantities.

Marine Propeller: Derivation of manufacturing variability, dimension reduction and Robust
Design Optimization (RDO)

The developed methodology is applied to the characterization of manufacturing uncertainties of a marine propel-
ler in (Vidal et al., 2019). The main results of this industrial application are summarized to illustrate its value in
engineering design. The goal of the study is to optimize the propeller shape to make its performances more
robust with respect to the manufacturing uncertainties.
Manufacturing tolerances for marine propellers are defined by ISO norms such as the ISO-484-2 (ISO-484-2,

2015) for any marine propeller between 0.80 and 2.50 m in diameter. The tolerances are taken from the most
stringent class for the ship propeller and the relevant values are summarized in Table 4.
This results in the following manufacturing uncertainties

• The chord in 4 different sections (symmetric beta PDF)
• The thickness distribution in 4 different sections (non-symmetric beta PDF)
• The rake, which represents the linear position of the tip compared to the root of the blade (symmetric beta

PDF)
• The tip gap between the blade and the duct (symmetric beta PDF)

Figure 12. Evolution of mean value and standard deviation prediction for isentropic efficiency and absolute total

pressure ratio in function of the number of modes retained.

Figure 11. Geometrical variability of the third eigenmode. In blue (left) deformation against the 3rd eigenmode; in

red (right) deformation with the 3rd eigenmode.
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In addition, an operational uncertainty for the ship speed is taken into account in the UQ analysis. An initial
UQ study is performed with these 13 uncertainties. Then the scaled sensitivities are analyzed and as a result all
chord and thickness uncertainties are merged together, i.e. the change in the shape of the blade profile is con-
trolled by a single section. The rake uncertainty is found negligible for this most stringent tolerance class taken
for the study. This reduces the number of uncertainty parameters to 4. As Figure 14 shows, the analysis of the
scaled sensitivities with 4 uncertainties are equivalent to those accounting for 13 uncertainties. The reduction by
means of scaled sensitivities is therefore valid and the robust design optimization is performed accounting for the
remaining 4 uncertainties.
The robust optimization maximizes the mean value of the open water efficiency and simultaneously minimizes

the standard deviation of the open water efficiency. Figure 15 shows the resulting Pareto plot, where the standard
deviation of the open water efficiency is plotted over the mean value of the open water efficiency. The baseline
design is indicated by the “+” symbol. A standard deterministic optimization is performed for reasons of com-
parison with the robust design optimization. To plot the results of the deterministic optimization in the same
diagram a UQ simulation is done on the deterministic optimal geometry. This deterministic optimum is indi-
cated by the “x”. The mean value of the open water efficiency has increased by 8.5%, but the standard deviation
has also increased slightly by 2.6%. Three robust optimal designs are shown on the plot by the plain “o”. It is
seen that the mean value has increased, but at the same time the standard deviation has decreased. In the
example of robust optimal design 3, the mean value has also increased by 8.5%, but the standard deviation has
decreased by 17.7%, which means the propeller design is notably more robust with respect to the characterized
manufacturing uncertainties and provides at the same time the same mean performance increase.
As a last result it is noteworthy that the resulting blade shapes from the standard deterministic and robust

design optimization are significantly different, despite the fact that both increase the mean efficiency by the same
amount. Figure 16 shows a comparison of the deterministic optimal and robust optimal geometry with the ori-
ginal propeller shapes respectively.

Figure 13. Scaled sensitivities for the isentropic efficiency for the 7 first modes retained. 3rd eigenmode is the third

line from the bottom.

Table 4. Admissible tolerances for the marine propeller.

Plus tolerance Minus tolerance

Tip radius 0.2% (not less than 1.5 mm) 0.2% (not less than 1.5 mm)

Rake 0.5% 0.5%

Blade thickness 2% (not less than 2 mm) 1% (not less than 1 mm)

Blade chord 1.5% (not less than 7 mm) 1.5% (not less than 7 mm)
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Conclusions

To address the problem of a suitable characterization of manufacturing uncertainties an approach for deriving
manufacturing variability from technical tolerancing norms is presented. On top of this method, a virtual sam-
pling method is built and applied and then combined with principal component analysis. This methodology is
applied to a high-pressure turbine blade. Propagating uncertainties for the various tolerance classes, it is found
that the most stringent class does not bring an advantage in performance stability over the next less stringent
class. Exploiting uncertainty quantification methods provides a quantitative assessment of the impact of manufac-
turing tolerances and as in the presented turbine case could lead to significant cost savings in the manufacturing
process, if a less stringent tolerance class can be imposed.
The virtual sampling method is used to run a convergence study on the number of geometries required for

the computation of the eigenvalues resulting from the PCA. It is found that 2,000 geometries are needed to con-
verge the computation of the eigenvalues, which is sensibly above the number of geometries that are typically
experimentally measured. A sufficiently large sample size is important because the eigenvalues represent the var-
iances of the uncertainties resulting from the PCA and unconverged values could lead to wrong conclusions.
The geometrical influence of the first three eigenmodes obtained is discussed and it is shown that the first and

second eigenmode deform the geometry in the order of the span height and chord length of the blade respect-
ively. The third eigenmode is found to have smaller geometrical influence mainly in the region of the blade
leading edge. Then UQ simulations are performed for sets of eigenmodes retained and it is shown that adding

Figure 14. Scaled sensitivity derivatives of the open water efficiency with respect to the full set of characterized

uncertainties (left) and the reduced set of uncertainties (right).

Figure 15. Pareto plot of mean value and standard deviation of open water efficiency.
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mode 3 adds significantly to the predicted variance of the isentropic efficiency despite its relatively low geomet-
rical influence. The analysis of scaled sensitivity derivatives confirms the importance of the 3rd eigenmode in
this respect. This shows that the geometrical reconstruction accuracy of the deformation modes and reconstruc-
tion accuracy of the CFD predictions are not linearly related, which is something that should be kept in mind
when truncations are performed on the basis of geometrical variability only.
Finally, the results of an application of the UQ and RDO method used to the robust optimization of a

marine propeller are shown. The manufacturing uncertainties are characterized on the basis of the relevant toler-
ancing norm for marine propellers. Scaled sensitivity derivatives are used to reduce the number of uncertainties
before performing a robust design optimization. The robust design optimization maximizes simultaneously the
mean value of the open water efficiency and minimizes its standard deviation. It is shown that only a robust opti-
mization formulation can reduce the variability of the performance with respect to the manufacturing uncertainty
and that the resulting blade shapes from deterministic and robust optimization are significantly different.

Nomenclature

CAD Computer Aided Design
CDF Cumulative Distribution Function
CFD Computational Fluid Dynamics
DoE Design of Experiment
PCA Principal Component Analysis
PDF Probability Density Function
RDO Robust Design Optimization
UQ Uncertainty Quantification
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